Handwritten Digits Recognition by Bio-inspired Hierarchical Networks
نویسندگان
چکیده
The human brain processes information showing learning and prediction abilities but the underlying neuronal mechanisms still remain unknown. Recently, many studies prove that neuronal networks are able of both generalizations and associations of sensory inputs. In this paper, following a set of neurophysiological evidences, we propose a learning framework with a strong biological plausibility that mimics prominent functions of cortical circuitries. We developed the Inductive Conceptual Network (ICN), that is a hierarchical bio-inspired network, able to learn invariant patterns by Variable-order Markov Models implemented in its nodes. The outputs of the top-most node of ICN hierarchy, representing the highest input generalization, allow for automatic classification of inputs. We found that the ICN clusterized MNIST images with an error of 5.73% and USPS images with an error of 12.56%.
منابع مشابه
The biologically inspired Hierarchical Temporal Memory
It is herein proposed a handwritten digit recognition system which biologically inspired of the large-scale structure of the mammalian neocortex. Hierarchical Temporal Memory (HTM) is a memory-prediction network model that takes advantage of the Bayesian belief propagation and revision techniques. In this article a study has been conducted to train a HTM network to recognize handwritten digits ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملHandwritten digit recognition using biologically inspired features
Image recognition problems are usually difficult to solve using raw pixel data. To improve the recognition it is often needed some form of feature extraction to represent the data in a feature space. We use the output of a biologically inspired model for visual recognition as a feature space. The output of the model is a binary code which is used to train a linear classifier for recognizing han...
متن کاملRecognition of Handwritten Digits Using Multilayer Perceptrons
Neural networks are often used for pattern recognition. They prove to be a popular choice for OCR (Optical Character Recognition) systems, especially when dealing with the recognition of printed text. In this paper, multilayer perceptrons are used for the recognition of handwritten digits. The accuracy achieved proves that this application is a working prototype that can be further extended int...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012